DEHP complexes of lanthanides(III) and actinides(III)

D.N. Suglobov, Yu. I. Trifonov, E.K. Legin and A.G. Tutov

V.G. Khlopin Radium Institute, Shvernic Str. 28, 194021 St. Petersburg, (Russian Federation)

Abstract

Lanthanides di-(2-ethylhexyl)phosphates (LnA₃) crystallize as needle-like samples exhibiting an axial texture with an identity period along texture of 5.3 Å. A hexagonal elementary cell of EuA₃ has the following parameters: a = 18.6 Å, c = 10.4 Å, z = 2. As is evident from IR and luminescence (EuA₃) spectra, LnA₃ molecules form rigidchain coordination polymer structure with neighbouring coordination octahedra linked by alkylphosphate bridges. LnA₃ is very poorly soluble in alkanes as well as in donor solvents. However, we developed the series systems in which the solubility of LnA₃ increases dramatically as a result of the formation of oligomers or mixed-ligand complexes. Coordination chemical processes occurring in these systems have been studied using thermodynamic and spectroscopic methods. The structural formulae and strength of the complexes formed are discussed. On the decomposition of mixed-ligand complexes, considerable separation in the Am-lanthanides and Eu-lanthanides series occurs.

1. Introduction

The thermodynamic and kinetic behaviour of lanthanides(III) and actinides(III) upon extraction with di-(2-ethylhexyl) phosphoric acid (HA) has been studied rather thoroughly [1,2]. However, some important problems of molecular structure and coordination properties of rare earth (RE) di-(2-ethylhexyl) phosphates remain to be solved. In the present work some normal nonsolvated lanthanide di-(2-ethylhexyl) phosphates (LnA₃) were synthesized and their molecular structure and coordination chemical properties were studied. The structural investigations of crystalline samples were performed by X-ray and spectrometric (IR and luminescence) methods. The coordination chemical behaviour was studied in the processes of LnA₃ dissolving in organic solvents on interaction with different ligands. The IR and luminescence spectra were used to bring out the structure and polymerization of complexes formed. The decomposition reactions of soluble alkylphosphate complexes were studied, and considerable separation of lanthanide and americium was established.

2. Experimental details

HEDHP previously purified from pyro- and monoethers was refined from neutral impurities according to Ref. [3] by mixing equivalent quantities of NaA and La(NO₃)₃. $6H_2O$ acetone solutions and separation of the LnA₃ precipitate formed. This procedure was also used in the present work for the synthesis of LnA₃ crystalline powders. Needle-like samples of LnA₃ crystals were grown from a solution of polymeric LnA₃ in a CCl₄ (80 vol.%), *n*-C₈H₁₇OH (20 vol.%) mixture by slow evaporation of CCl₄. LnA₃ samples were analysed by degradation of *n*-octane solution by contacting with 10 ml HNO₃ and subsequent titrimetric determination of lanthanide and HA in the water and organic phases respectively. Analytical data obtained correspond to the formula LnA₃. IR spectra were recorded on an IRS-29 spectrometer; luminescence spectra were registered on an SDL-2 spectrometer (λ_{Hg} = 360 nm). The X-ray patterns of crystals were measured in a Weissenberg chamber (Cu K α).

3. Molecular and crystal structure of LnA₃

The X-ray study has shown that the crystals of LnA₃ exhibit an axial texture. The presence of such texture indicates that the molecules of LnA₃ and previously studied Nd[O₂P(O₂C₂H₅)₂]₃ [4] have an identical linear rigid-chain coordination polymer structure. An identity period along the LnA₃ texture of 5.3 Å was determined from X-ray patterns. The character of the splitting in the luminescence spectrum (${}^{5}D_{0}{}^{-7}F_{1,2}$) corresponds to the octahedral coordination sphere of Eu³⁺ in EuA₃ (Fig. 1). In the IR spectrum there are bands ν_{s} (PO) at 1090 cm⁻¹ and ν_{as} (PO) at 1180 cm⁻¹ which are assigned to the PO stretching vibrations of bridged alkyl phosphate groups.

Fig. 1. Luminescence spectrum of polycrystalline EuA₃.

Fig. 2. Model of EuA_3 polymeric molecule: \bigcirc , Eu^{3+} ; \bigcirc , oxygen; \bigcirc , phosphorus; R, 2-ethylhexyl radical.

The model of the polymeric molecule $(LnA_3)_n$ was constructed on the basis of X-ray and spectroscopic data (Fig. 2). In compliance with the model, Ln^{3+} ions in LnA₃ have an octahedral coordination sphere and the faces of neighbouring octahedra are linked by alkylphosphate bridges. The distance Ln–Ln calculated from the model is in good agreement with the identity period of the texture (5.3 Å). The 2-ethylhexyl radicals are positioned perpendicular to the polymer axis. The elementary cell of EuA₃ (hexagonal) has the following parameters: a = 18.6 Å, c = 10.4 Å, Z = 2, $\rho_{calc} = 1.16$ g cm⁻³, $\rho_{exp} = 1.21$ g cm⁻³. In the crystal lattice each EuA₃ molecule is surrounded by six neighbours at a distance of 18.6 Å and connected with them by Van der Waals forces.

4. Solvation and coordination chemical properties of LnA₃ in organic solution

 LnA_3 is very poorly soluble in alkanes as well as in donor solvents (ROH, CH₃COCH₃, H₂O, R₃N, (RO)₃PO, etc.). However, LnA₃ forms viscous polymeric solutions in highly polarizable solvents such as CCl_4 . Such solutions contain the rigid polymeric molecules $(LnA_3)_n$ and, as shown in Ref. [5], are lyophilic liquid crystals (nematic).

Later we shall consider some systems in which the partial destruction of alkylphosphate bridge bonds in LnA_3 polymers occurs to yield a low viscous solution of oligomers.

4.1. Behaviour of LnA_3 in the system n-octane-noctanol-ammonia

The solubility of solid LnA_3 in an octane-octanol mixture increases sharply upon addition of gaseous NH_3 :

$$LnA_3 + NH_3 \longrightarrow soluble complex (I)$$
 (1)

The solubility of $LnA_3(S)$ as a function of NH_3 partial pressure (P_{NH_3}) is fitted by the equation

$$S = S^0 + k P_{\rm NH_3}^n \tag{2}$$

where S^0 is the solubility of LnA₃ at $P_{\text{NH}_3}=0$; $k=S-S^0$ at $P_{\text{NH}_3}=10^5$ Pa and *n* is an empirical parameter (Fig. 3).

At a fixed $P_{\rm NH_3}$ the maximum LnA₃ solubility is achieved at 20 vol.% ROH. A considerable quantity of NH₃ was observed to be absorbed by solid LnA₃. This process as seen from X-ray patterns results in a significant distortion of the LnA₃ crystal lattice. However, the bands of coordinated NH₃ molecules are not registered in the IR spectra of solid LnA₃ and samples of solutions saturated by ammonia, which suggests that the NH₃ interaction with LnA₃ is of an outer-sphere character.

The bands corresponding to terminal alkylphosphate group vibrations are not observed in the IR spectra of the above solutions. Consequently the soluble LnA_3 oligomers produced by NH_3 action are rather long.

Fig. 3. $S-S^0$ as a function of P_{NH} for various lanthanides (*n*-octane, *n*-octanol (20 vol.%, 20 °C): 1, NdA₃, n=0.5; 2, CeA₃, n=0.75; 3, GdA₃, n=1; 4, SmA₃, n=1; 5, LaA₃, n=2.

Reaction (1) is shifted to the left during NH_3 removal from solution by blowing with air, yielding solid LnA_3 .

4.2. Solubility of LnA_3 in $Ln(NO_3)_3 \cdot 6H_2O$ acetone solutions

Upon addition of $Ln(NO_3)_3 \cdot 6H_2O$ acetone solution to a heterogeneous mixture of solid LnA_3 and acetone, rapid dissolution of the solid occurs as a result of the reaction

$$LnA_3 + 2Ln(NO_3)_3(ac.) = 3LnA(NO_3)_2(ac.)$$
 (3)

In the case of LaA₃ this reaction is strongly shifted to the right, which allows one to isolate LaA(NO₃)₂·2H₂O (II) as an individual complex. The IR spectrum of (II) shows the bands ν_{as} (PO) at 1190 cm⁻¹ and ν_s (PO) at 1090 cm⁻¹ of bridged alkylphosphates anions, the bands ν_4 at 1507 cm⁻¹, ν_1 at 1275 cm⁻¹ and ν_6 at 810 cm⁻¹ of bidentately coordinated nitrate anions and the bands ν_{OH} at 3400 cm⁻¹ and $\delta_{H_{2O}}$ at 1620 cm⁻¹ of coordinated water molecules. According to these data, the following structural formula of (II) may be proposed:

The number of bridged alkylphosphate groups in this polymeric complex is one-third of that in LnA₃, leading to considerable depolymerization of mixed complexes in solution. One of the causes of mixed complex formation is the increase in lanthanide coordination number from six in LnA₃ to eight in (II). Furthermore, the formation of (II) is facilitated by the strengthening of the NO₃⁻ coordination in the mixed complex $(\nu_4 - \nu_1 = 232 \text{ cm}^{-1}, \nu_6 = 810 \text{ cm}^{-1})$ in comparison with Ln(NO₃)₂·6H₂O. $(\nu_4 - \nu_1 = 210 \text{ cm}^{-1}, \nu_6 = 818 \text{ cm}^{-1})$.

As seen from Fig. 4, the solubility of LnA_3 by reaction (3) is decreased in the series LaA_3 -ErA₃ as a result of alkylphosphate bridge bond strengthening.

4.3. Solubility of LnA_3 in acidic organic solutions

Upon addition of concentrated HNO₃ (15 mol l^{-1}) dropwise to a heterogeneous mixture of LnA₃ and acetone with stirring, rapid dissolution of the solid occurs as a result of acidic mixed complex (III) formation:

$$LnA_3 + 2HNO_3 = LnA(NO_3HA)_2 (III)$$
(4)

Fig. 4. Solubility of LnA_3 in acetone as a function of $Ln(NO_3)_3$ concentration for various lanthanides (20 °C).

Fig. 5. Solubility of LnA_3 in acetone as a function of HNO_3 concentration for various lanthanides (20 °C).

The equilibrium constants of this reaction decreased along the lanthanide series (Fig. 5). However, in the case of lanthanum reaction (4) is strongly shifted to the right, which allows one to isolate the individual complex (III). This complex may also be prepared by reaction of HA with complex (II):

$$LaA(NO_3)_2 \cdot 2H_2O + 2HA$$

= LaA(NO_3HA)_2 + 2H_2O (5)

In the IR spectrum of (III) the bands of bidentately coordinated NO₃⁻ anions (810, 1280, 1510 cm⁻¹), the bands $\nu_{\rm ss}$ (PO) and $\nu_{\rm s}$ (PO) of bridged alkylphosphate groups (1190, 1090 cm⁻¹) and the bands of chelated NO₃HA⁻ bianions (1030, 1090 cm⁻¹) are observed. The following structural formula of (III) may be proposed on the basis of these data:

If a solution of HA in octane is used as acidic reagent, rapid dissolution of LnA_3 occurs by the reaction

$$LnA_3 + HA = LnA_2(AHA) (IV)$$
(6)

The equilibrium constants of this reaction decrease along the lanthanide series: La, 2.5×10^{-1} ; Nd, 1.1×10^{-1} ; Eu, 4.9×10^{-2} ; Dy, 1.1×10^{-2} ; Er, 2.8×10^{-3} .

The bands $\nu_{as}(PO)$ and $\nu_{s}(PO)$ of bridged alkylphosphate groups (1180, 1090 cm⁻¹) are present in the IR spectrum of (IV). The hyperfine splitting in the luminescence spectrum corresponds to the distorted octahedral symmetry of the Eu³⁺ coordination sphere in EuA₂(AHA). We propose the following structural formula of (IV):

4.4. Separation of americium and lanthanide in reactions of soluble complex decomposition

The complexes (I–IV) have low thermodynamic stability and therefore may be degraded by reaction with rather "soft" chemical reagents. The decomposition reactions yield the soluble lanthanide complexes and a solid precipitate of LnA₃. The complex (I) may be decomposed by removal of NH₃ by blowing air through the solution. The complexes (II) and (III) may be decomposed by addition of the small portion of water. The complex (IV) is degraded upon addition of polar compounds such as R(OH), (RO)₃PO, etc.

The distribution of metals between the soluble and solid decomposition products of complex (I) is considerably dependent on the metallic ion nature. Figure 6 shows the distribution of Am and Eu between solid phase (LnA_3) and solution as a function of the degree of complex (I) decomposition. According to this dependence, the preferential concentration of Am rather than Eu in solution is observed. This separation effect is caused by the formation of a more soluble fraction of AmA₃ oligomers in process (1).

The effect of metal separation in the Am-lanthanide and Eu-lanthanide series during the decomposition of

Fig. 6. Ratio of 241 Am/¹⁵²Eu in (1) solution and (2) precipitate as a function of EuA₃ fraction in precipitate.

Fig. 7. Dependence of (1) Am-lanthanide and (2) Eu-lanthanide separation (reaction (7)) on lanthanide nature: β (Am/Ln) = $C_{\rm am}$ (sol.) $C_{\rm Ln}$ (prec.) $/C_{\rm Am}$ (prec.) $C_{\rm Ln}$ (sol.); β (Eu/Ln) is defined analogously.

(II) with water according to

$$LnA(NO_{3}HA)_{2} + H_{2}O = LnA_{3} + 2HNO_{3}$$
 (7)

is shown in Fig. 7. From these data it is seen that Am is preferentially concentrated in solution from mixtures with heavy lanthanides. Am and Nd show similar behaviour and the inversion of separation occurs in the Am-light lanthanide series. For the separation in the Eu-lanthanide series similar regularities were observed, but shifted along the abscissa.

The separation of metals in the systems studied was established to be independent of the complex decomposition degree. However, the separation may be increased by addition of specific reagents. For example, an increase in β (Am/Eu) from 10 to 40 is observed in system (III) upon increasing the HNO₃ concentration from the minimal required for dissolving LnA₃ to 0.25 mol 1⁻¹. An increase in β (Am/Eu) from 10 to 40 is also achieved upon addition of strong complexing reagents (EDTA, DTPA).

References

1 B.V. Martinov, Extraction by Organic Acids and Their Salts, Atomizdat, Moscow, 1978 (in Russian).

- ² G.A. Yagodin, S.Z. Kagan, V.V. Tarasov, in G.A. Yagodin (ed.), *The Basis of Liquid Extraction*, "Chemistry", Moscow, 1981 (in Russian).
- ³ E.K. Legin and V.P. Arsenteva, The method of purification of di-(2-ethylhexyl) phosphoric acid from neutral organic impurities, *Bull. Izobretenii (USSR)*, 2 (1979) 99–100.
- 4 V.G. Lebedev, K.K. Palkina and S.N. Maksimova, Synthesis and structure of Nd[PO₂(OC₂H₅)₂]₃ crystals, J. Neorg. Khim. (USSR), 27(11) (1982) 2980–2982.
- 5 Yu.I. Trifonov, E.K. Legin and D.N. Suglobov, The solvation and phase processes in the organic solutions of lanthanides di-(2-ethylhexyl) phosphates, *Radiokhimiya*, 33 (3) (1991) 63-69.